Alphatoxin Nanopore Detection of Aflatoxin, Ochratoxin and Fumonisin in Aqueous Solution
Artur Alves Rodrigues da Silva,
Janilson José da Silva Júnior,
Maria Isabel dos Santos Cavalcanti,
Dijanah Cota Machado,
Paloma Lys Medeiros,
Claudio Gabriel Rodrigues
Affiliations
Artur Alves Rodrigues da Silva
Education and Health Center, Federal University of Campina Grande, Rua Aprígio Veloso, 882, Universitário, Campina Grande 58429-900, Brazil
Janilson José da Silva Júnior
Department of Biophysics and Radiobiology, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
Maria Isabel dos Santos Cavalcanti
Department of Biophysics and Radiobiology, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
Dijanah Cota Machado
Department of Biophysics and Radiobiology, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
Paloma Lys Medeiros
Department of Biophysics and Radiobiology, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
Claudio Gabriel Rodrigues
Postgraduate Program in Therapeutic Innovation, Federal University of Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife 50670-901, Brazil
Mycotoxins are toxic and carcinogenic metabolites produced by groups of filamentous fungi that colonize food crops. Aflatoxin B1 (AFB1), ochratoxin A (OTA) and fumonisin B1 (FB1) are among the most relevant agricultural mycotoxins, as they can induce various toxic processes in humans and animals. To detect AFB1, OTA and FB1 in the most varied matrices, chromatographic and immunological methods are primarily used; however, these techniques are time-consuming and expensive. In this study, we demonstrate that unitary alphatoxin nanopore can be used to detect and differentiate these mycotoxins in aqueous solution. The presence of AFB1, OTA or FB1 inside the nanopore induces reversible blockage of the ionic current flowing through the nanopore, with distinct characteristics of blockage that are unique to each of the three toxins. The process of discrimination is based on the residual current ratio calculation and analysis of the residence time of each mycotoxin inside the unitary nanopore. Using a single alphatoxin nanopore, the mycotoxins could be detected at the nanomolar level, indicating that alphatoxin nanopore is a promising molecular tool for discriminatory analysis of mycotoxins in aqueous solution.