China Foundry (May 2006)
Microstructure and bonding strength of Ni-based alloy coating
Abstract
A Ni-Cr-B-Si coating technique was developed and successfully applied on austenite grey iron substrate in a conventional resistance furnace under graphite powder protection. The microstructure, phase distribution, chemical composition profile and microhardness along the coating layer depth were investigated. Shear strength of the coating was also tested. Microanalysis shows that the coating is consist of γ-Ni solution and γ-Ni+Ni3B lamellar eutectic, as well as small amount of Cr5B3 particles. Diffusion induced metallurgical bonding occurs at the coating/substrate interfaces, and the higher the temperature, the more sufficient elements diffused, the broader interfusion region and the larger bonding strength, but it has an optimum value. And the bonding strength at the interface can be enable to reach 250-270 MPa, which is nearly the same as that of processed by flame spray. The microhardness along the coating layer depth shows a gradient distribution manner.