Electrical characteristics with various program temperatures (TPGM) in three-dimensional (3-D) NAND flash memory are investigated. The cross-temperature conditions of the TPGM up to 120 °C and the read temperature (TREAD) at 30 °C are used to analyze the influence of grain boundaries (GB) on the bit line current (IBL) and threshold voltage (VT). The VT shift in the E-P-E pattern is successfully decomposed into the charge loss (ΔVT,CL) component and the poly-Si GB (ΔVT,GB) component. The extracted ΔVT,GB increases at higher TPGM due to the reduced GB potential barrier. Additionally, the ΔVT,GB is evaluated using the Technology Computer Aided Design (TCAD) simulation, depending on the GB position (XGB) and the bit line voltage (VBL).