Biomedicines (Feb 2022)
Testicular Macrophages Produce Progesterone De Novo Promoted by cAMP and Inhibited by M1 Polarization Inducers
Abstract
Tissue-resident macrophages (Mø) originating from fetal precursors are maintained via self-renewal under tissue-/organ-specific microenvironments. Herein, we developed a propagation method of testicular tissue-resident Mø in mixed primary culture with interstitial cells composed of Leydig cells from the mouse testis. We examined Mø/monocyte marker expression in propagated testicular Mø using flow cytometry; gene expression involved in testosterone production as well as spermatogenesis in testicular Mø and interstitial cells propagated by mixed culture via RT-PCR; and progesterone (P4) de novo production in propagated testicular Mø treated with cyclic adenosine monophosphate, isoproterenol, and M1 polarization inducers using ELISA. Mø marker expression patterns in the propagated Mø were identical to those in testicular interstitial Mø with a CD206-positive/major histocompatibility complex (MHC) II-negative M2 phenotype. We identified the genes involved in P4 production, transcription factors essential for steroidogenesis, and androgen receptors, and showed that P4 production de novo was upregulated by cyclic adenosine monophosphate and β2-adrenergic stimulation and was downregulated by M1 polarization stimulation in Mø. We also demonstrated the formation of gap junctions between Leydig cells and interstitial Mø. This is the first study to demonstrate de novo P4 production in tissue-resident Mø. Based on previous studies revealing inhibition of testosterone production by P4, we propose that local feedback machinery between Leydig cells and adjacent interstitial Mø regulates testosterone production. The results presented in this study can facilitate future studies on immune-endocrine interactions in gonads that are related to infertility and hormonal disorders.
Keywords