Scientific Reports (Nov 2022)

Phenol- and resorcinol-appended metallocorroles and their derivatization with fluorous tags

  • Abraham B. Alemayehu,
  • Abhik Ghosh

DOI
https://doi.org/10.1038/s41598-022-23889-0
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Boron tribromide-mediated demethylation of rhenium-oxo and gold meso-tris(4-methoxyphenyl)corrole and meso-tris(3,5-dimethoxyphenylcorrole), M[TpOMePC] and M[T(3,5-OMe)PC] (M = ReO, Au), have yielded the corresponding phenol- and resorcinol-appended metallocorroles, M[TpOHPC] and M[T(3,5-OH)PC], in good yields. The latter compounds proved insoluble in dichloromethane and chloroform but soluble in THF. The M[T(3,5-OH)PC] derivatives also proved moderately soluble in 0.05 M aqueous KOH. Unlike oxidation-prone aminophenyl-substituted corroles, the phenol- and resorcinol-appended metallocorroles could be readily handled in air without special precautions. The phenolic metallocorroles could be readily alkylated with 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl iodide (“FtI”) to afford the fluorous-tagged metallocorroles M[TpOFtPC] and M[T(3,5-OFt)PC] in > 90% yields. The simplicity of the synthetic protocols promise a wide range of phenolic and fluorous-tagged porphyrin analogues with potential applications to diverse fields such as sensors, catalysis, and photodynamic therapy, among others.