International Journal of Molecular Sciences (May 2018)

A Biocontrol Strain of Bacillus subtilis WXCDD105 Used to Control Tomato Botrytis cinerea and Cladosporium fulvum Cooke and Promote the Growth of Seedlings

  • Hui Wang,
  • Yuying Shi,
  • Doudou Wang,
  • Zhongtong Yao,
  • Yimei Wang,
  • Jiayin Liu,
  • Shumei Zhang,
  • Aoxue Wang

DOI
https://doi.org/10.3390/ijms19051371
Journal volume & issue
Vol. 19, no. 5
p. 1371

Abstract

Read online

In this study, a strain named WXCDD105, which has strong antagonistic effects on Botrytis cinerea and Cladosporium fulvum Cooke, was screened out from the rhizosphere of healthy tomato plants. The tomato plants had inhibition diameter zones of 5.00 mm during the dual culture for four days. Based on the morphological and physiological characteristics, the 16S rDNA sequence, and the gyrB gene sequence analysis, the strain WXCDD105 was identified as Bacillus subtilis suBap. subtilis. The results of the mycelial growth test showed that the sterile filtrate of the strain WXCDD105 could significantly inhibit mycelial growth of Botrytis cinerea and Cladosporium fulvum Cooke. The inhibition rates were 95.28 and 94.44%, respectively. The potting experiment showed that the strain WXCDD105 made effective the control of tomato gray mold and tomato leaf mold. The control efficiencies were 74.70 and 72.07%. The antagonistic test results showed that the strain WXCDD105 had different degrees of inhibition on 10 kinds of plant pathogenic fungi and the average inhibition rates were more than 80%. We also found that the strain WXCDD105 stimulated both the seed germination and seedling growth of tomatoes. Using the fermentation liquid of WXCDD105 (108 cfu·mL−1) to treat the seeds, the germination rate and radicle length were increased. Under the treatment of the fermentation liquid of the strain WXCDD105 (106 cfu·mL−1), nearly all physiological indexes of tomato seedlings were significantly higher than that of the control groups. This could not only keep the nutritional quality of tomato fruits but also prevent them from rotting. This study provided us with an excellent strain for biological control of tomato gray mold, tomato leaf mold, and tomato growth promotion. This also laid the technical foundation for its application.

Keywords