Environmental Sciences Proceedings (Mar 2023)

A GIS-Based Fuzzy Hierarchical Modeling for Flood Susceptibility Mapping: A Case Study in Ontario, Eastern Canada

  • Amir Noori,
  • Hossein Bonakdari

DOI
https://doi.org/10.3390/ECWS-7-14242
Journal volume & issue
Vol. 25, no. 1
p. 62

Abstract

Read online

Natural disasters such as floods have severely destroyed the natural environment and infrastructure because of their destructive effects and caused socio-economic losses. In the present study, the authors attempt to present a flood hazard susceptibility map of an eastern region in Ontario, Canada to facilitate flood prevention and mitigation. To this purpose, a combination of Multi-Criteria Decision-Making (MCDM) model and Geographic Information System (GIS) has been considered. Herein, an Analytical Hierarchy Process (AHP) model is applied based on Triangular Fuzzy Numbers (TFNs) in a GIS environment. A total of eight quantitative criteria including elevation, land use/land cover, geology, rainfall, drainage density, slope, soil-type, and distance from river have been used for the flood modeling. Fuzzified pairwise comparison matrices of values have determined the Importance Weights (IWs) of these criteria in Saaty’s scale. By calculating IWs, the impact of each effective criterion on flood risk was investigated using the fuzzy AHP method. The consistency Index of each pairwise comparison of criteria has been checked. Based on the calculated IWs result of each criterion, the precipitation, slope, and soil criteria play significant roles as the most eminent flood occurrence criteria. In addition, the obtained results demonstrate percentages of flooded areas and the flood hazard index of the study area.

Keywords