Advances in Radiation Oncology (Jul 2024)
Prostate-Specific Membrane Antigen PET Response Associates with Metastasis-Free Survival After Stereotactic Ablative Radiation in Oligometastatic Prostate Cancer
Abstract
Purpose: Emerging data suggest that metastasis-directed therapy (MDT) improves outcomes in patients with oligometastatic castration-sensitive prostate cancer (omCSPC). Prostate-specific membrane antigen positron emission tomography (PSMA-PET) can detect occult metastatic disease, and PSMA response has been proposed as a biomarker for treatment response. Herein, we identify and validate a PSMA-PET biomarker for metastasis-free survival (MFS) following MDT in omCSPC. Methods and Materials: We performed an international multi-institutional retrospective study of patients with omCSPC, defined as ≤3 lesions, treated with metastasis-directed stereotactic ablative radiation who underwent PSMA-PET/computed tomography (CT) before and after (median, 6.2 months; range, 2.4-10.9 months) treatment. Pre- and post-MDT PSMA-PET/CT maximum standardized uptake value (SUVmax) was measured for all lesions, and PSMA response was defined as the percent change in SUVmax of the least responsive lesion. PSMA response was both evaluated as a continuous variable and dichotomized into PSMA responders, with a complete/partial response (at least a 30% reduction in SUVmax), and PSMA nonresponders, with stable/progressive disease (less than a 30% reduction in SUVmax). PSMA response was correlated with conventional imaging-defined metastasis-free survival (MFS) via Kaplan-Meier and Cox regression analysis. Results: A total of 131 patients with 261 treated metastases were included in the analysis, with a median follow-up of 29 months (IQR, 18.5-41.3 months). After stereotactic ablative radiation, 70.2% of patients were classified as PSMA responders. Multivariable analysis demonstrated that PSMA response as a continuous variable was associated with a significantly worse MFS (hazard ratio = 1.003; 95% CI, 1.001-1.006; P = .016). Patients classified as PSMA responders were found to have a significantly improved median MFS of 39.9 versus 12 months (P = .001) compared with PSMA nonresponders. Our study is limited as it is a retrospective review of a heterogenous population. Conclusions: After stereotactic ablative radiation, PSMA-PET response appears to be a radiographic biomarker that correlates with MFS in omCSPC. This approach holds promise for guiding clinical management of omCSPC and should be validated in a prospective setting.