Cancers (May 2020)

<i>WRN</i>-Mutated Colorectal Cancer Is Characterized by a Distinct Genetic Phenotype

  • Kai Zimmer,
  • Alberto Puccini,
  • Joanne Xiu,
  • Yasmine Baca,
  • Gilbert Spizzo,
  • Heinz-Josef Lenz,
  • Francesca Battaglin,
  • Richard M. Goldberg,
  • Axel Grothey,
  • Anthony F. Shields,
  • Mohamed E. Salem,
  • John L. Marshall,
  • W. Michael Korn,
  • Dominik Wolf,
  • Florian Kocher,
  • Andreas Seeber

DOI
https://doi.org/10.3390/cancers12051319
Journal volume & issue
Vol. 12, no. 5
p. 1319

Abstract

Read online

Werner syndrome gene (WRN) contributes to DNA repair. In cancer, WRN mutations (WRN-mut) lead to genomic instability. Thus, WRN is a promising target in cancers with microsatellite instability (MSI). We assessed this study to investigate the molecular profile of WRN-mut in colorectal cancer (CRC). Tumor samples were analyzed using next-generation sequencing (NGS) in-situ hybridization and immunohistochemistry. Tumor mutational burden (TMB) was calculated based on somatic nonsynonymous missense mutations. Determination of tumor mismatch repair (MMR) or microsatellite instability (MSI) status was conducted by fragment analysis. WRN-mut were detected in 80 of 6854 samples (1.2%). WRN-mut were more prevalent in right-sided compared to left-sided CRC (2.5% vs. 0.7%, p WRN-mut than in WRN wild-type (WRN-wt). WRN-mut were associated with a higher TMB in the MSI-H/dMMR and in the MSS (microsatellite stable) subgroups. Several genetic differences between WRN-mut and WRN-wt CRC were observed, i.e., TP53 (47% vs. 71%), KRAS (34% vs. 49%) and APC (56% vs. 73%). This is the largest molecular profiling study investigating the genetic landscape of WRN-mut CRCs so far. A high prevalence of MSI-H/dMMR, higher TMB and PD-L1 in WRN-mut tumors were observed. Our data might serve as an additional selection tool for trials testing immune checkpoint antibodies in WRN-mut CRC.

Keywords