Cu-Doped Sb<sub>2</sub>Se<sub>3</sub> Thin-Film Solar Cells Based on Hybrid Pulsed Electron Deposition/Radio Frequency Magnetron Sputtering Growth Techniques
Roberto Jakomin,
Stefano Rampino,
Giulia Spaggiari,
Michele Casappa,
Giovanna Trevisi,
Elena Del Canale,
Enos Gombia,
Matteo Bronzoni,
Kodjo Kekeli Sossoe,
Francesco Mezzadri,
Francesco Pattini
Affiliations
Roberto Jakomin
Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25240-005, Brazil
Stefano Rampino
Consiglio Nazionale delle Ricerche, IMEM Institute, 43124 Parma, Italy
Giulia Spaggiari
Consiglio Nazionale delle Ricerche, IMEM Institute, 43124 Parma, Italy
Michele Casappa
Consiglio Nazionale delle Ricerche, IMEM Institute, 43124 Parma, Italy
Giovanna Trevisi
Consiglio Nazionale delle Ricerche, IMEM Institute, 43124 Parma, Italy
Elena Del Canale
Consiglio Nazionale delle Ricerche, IMEM Institute, 43124 Parma, Italy
Enos Gombia
Consiglio Nazionale delle Ricerche, IMEM Institute, 43124 Parma, Italy
Matteo Bronzoni
Consiglio Nazionale delle Ricerche, IMEM Institute, 43124 Parma, Italy
Kodjo Kekeli Sossoe
Centre d′Excellence Régional pour la Maîtrise de l′Electricité (CERME), University of Lomé, Lomé 01 BP 1515, Togo
Francesco Mezzadri
Consiglio Nazionale delle Ricerche, IMEM Institute, 43124 Parma, Italy
Francesco Pattini
Consiglio Nazionale delle Ricerche, IMEM Institute, 43124 Parma, Italy
In recent years, research attention has increasingly focused on thin-film photovoltaics utilizing Sb2Se3 as an ideal absorber layer. This compound is favored due to its abundance, non-toxic nature, long-term stability, and the potential to employ various cost-effective and scalable vapor deposition (PVD) routes. On the other hand, improving passivation, surface treatment and p-type carrier concentration is essential for developing high-performance and commercially viable Sb2Se3 solar cells. In this study, Cu-doped Sb2Se3 solar devices were fabricated using two distinct PVD techniques, pulsed electron deposition (PED) and radio frequency magnetron sputtering (RFMS). Furthermore, 5%Cu:Sb2Se3 films grown via PED exhibited high open-circuit voltages (VOC) of around 400 mV but very low short-circuit current densities (JSC). Conversely, RFMS-grown Sb2Se3 films resulted in low VOC values of around 300 mV and higher JSC. To enhance the photocurrent, we employed strategies involving a thin NaF layer to introduce controlled local doping at the back interface and a bilayer p-doped region grown sequentially using PED and RFMS. The optimized Sb2Se3 bilayer solar cell achieved a maximum efficiency of 5.25%.