BMC Medical Informatics and Decision Making (Dec 2021)
Safer prescription of drugs: impact of the PREFASEG system to aid clinical decision-making in primary care in Catalonia
Abstract
Abstract Background In 2008, the Institut Català de la Salut (ICS, Catalan Health Institute) implemented a prescription decision support system in its electronic clinical workstation (ECW), which automatically generates online alerts for general practitioners when a possible medication-related problem (MRP) is detected. This tool is known as PREFASEG, and at the time of beginning a new treatment, it automatically assesses the suitability of the treatment for the individual patient. This analysis is based on ongoing treatments, demographic characteristics, existing pathologies, and patient biochemical variables. As a result of the assessment, therapeutic recommendations are provided. The objective of this study is to present the PREFASEG tool, analyse the main alerts that it generates, and determine the degree of alert acceptance. Methods A cross-sectional descriptive study was carried out to analyse the generation of MRP-related alerts detected by PREFASEG during 2016, 2017, and 2018 in primary care (PC) in Catalonia. The number of MRP alerts generated, the drugs involved, and the acceptance/rejection of the alerts were analysed. An alert was considered "accepted" when the medication that generated the alert was not prescribed, thereby following the recommendation given by the tool. The MRP alerts studied were therapeutic duplications, safety alerts issued by the Spanish Medicines Agency, and drugs not recommended for use in geriatrics. The prescriptions issued by 6411 ICS PC physicians who use the ECW and provide their services to 5.8 million Catalans through 288 PC teams were analysed. Results During the 3 years examined, 67.2 million new prescriptions were analysed, for which PREFASEG generated 4,379,866 alerts (1 for every 15 new treatments). A total of 1,222,159 alerts (28%) were accepted. Pharmacological interactions and therapeutic duplications were the most detected alerts, representing 40 and 30% of the total alerts, respectively. The main pharmacological groups involved in the safety alerts were nonsteroidal anti-inflammatory drugs and renin-angiotensin system inhibitors. Conclusions During the period analysed, 28% of the prescriptions wherein a toxicity-related PREFASEG alert was generated led to treatment modification, thereby helping to prevent the generation of potential safety MRPs. However, the tool should be further improved to increase alert acceptance and thereby improve patient safety.
Keywords