Nature Communications (May 2021)

Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression

  • Patrick A. K. Reinbold,
  • Logan M. Kageorge,
  • Michael F. Schatz,
  • Roman O. Grigoriev

DOI
https://doi.org/10.1038/s41467-021-23479-0
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 8

Abstract

Read online

Reinbold et al. propose a physics-informed data-driven approach that successfully discovers a dynamical model using high-dimensional, noisy and incomplete experimental data describing a weakly turbulent fluid flow. This approach is relevant to other non-equilibrium spatially-extended systems.