Encyclopedia (Sep 2024)

Energy Efficiency in Buildings: Performance Gaps and Sustainable Materials

  • Henry Odiri Igugu,
  • Jacques Laubscher,
  • António Benjamim Mapossa,
  • Patricia Abimbola Popoola,
  • Modupeola Dada

DOI
https://doi.org/10.3390/encyclopedia4040092
Journal volume & issue
Vol. 4, no. 4
pp. 1411 – 1432

Abstract

Read online

Real-world energy efficiency in the building sector is currently inadequate due to significant discrepancies between predicted and actual building energy performance. As operational energy is optimized through improved building envelopes, embodied energy typically increases, further exacerbating the problem. This gap underscores the critical need to re-evaluate current practices and materials used in energy-efficient building construction. It is well established that adopting a life cycle view of energy efficiency is essential to mitigate the building sector’s contribution to rising global energy consumption and CO2 emissions. Therefore, this study aims to examine existing research on sustainable building materials for life cycle energy efficiency. Specifically, it reviews recent research to identify key trends, challenges, and suggestions from tested novel materials. A combination of theoretical analysis and narrative synthesis is employed in a four-stage framework discussing the challenges, context, concepts, and the reviewed literature. Key trends include the growing adoption of sustainable materials, such as bio-fabricated and 3D printed materials, which offer improved insulation, thermal regulation, and energy management capabilities. Multifunctional materials with self-healing properties are also emerging as promising solutions for reducing energy loss and enhancing building durability. The focus on reusing materials from the agricultural, food production, and paper manufacturing industries in building construction highlights the opportunity to facilitate a circular economy. However, the challenges are substantial, with more research required to ascertain long-term performance, show opportunities to scale the implementation of these novel materials, and drive market acceptance.

Keywords