Sensitivity Tests of Pellets Made from Manganese Antimonate Nanoparticles in Carbon Monoxide and Propane Atmospheres
Héctor Guillén-Bonilla,
Verónica-M. Rodríguez-Betancourtt,
José Trinidad Guillen-Bonilla,
Lorenzo Gildo-Ortiz,
Alex Guillen-Bonilla,
Y. L. Casallas-Moreno,
Oscar Blanco-Alonso,
Juan Reyes-Gómez
Affiliations
Héctor Guillén-Bonilla
Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara 44410, Mexico
Verónica-M. Rodríguez-Betancourtt
Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara 44410, Mexico
José Trinidad Guillen-Bonilla
Departamento de Electrónica y Computación, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara 44410, Mexico
Lorenzo Gildo-Ortiz
Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara 44410, Mexico
Alex Guillen-Bonilla
Departamento de Ciencias Computacionales e Ingenierías, Centro Universitario de los Valles (CUVALLES), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km 45.5, Ameca 46600, Mexico
Y. L. Casallas-Moreno
Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Politécnico Nacional—UPIITA, Av. IPN 2580 Col. Barrio la Laguna Ticomán, Ciudad de Mexico C.P. 07340, Mexico
Oscar Blanco-Alonso
Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara 44410, Mexico
Juan Reyes-Gómez
Facultad de Ciencias, Universidad de Colima, Las Víboras 28045, Mexico
Nanoparticles of manganese antimonate (MnSb2O6) were prepared using the microwave-assisted colloidal method for its potential application as a gas sensor. For the synthesis of the oxide, manganese nitrate, antimony chloride, ethylenediamine and ethyl alcohol (as a solvent) were used. The precursor material was calcined at 800 °C in air and analyzed by X-ray diffraction. The oxide crystallized into a hexagonal structure with spatial group P321 and cell parameters a = b = 8.8054 Å and c = 4.7229 Å. The microstructure of the material was analyzed by scanning electron microscopy (SEM), finding the growth of microrods with a size of around ~10.27 μm and some other particles with an average size of ~1.3 μm. Photoacoustic spectroscopy (PAS) studies showed that the optical energy band (Eg) of the oxide was of ~1.79 eV. Transmission electron microscopy (TEM) analyses indicated that the size of the nanoparticles was of ~29.5 nm on average. The surface area of the powders was estimated at 14.6 m2/g by the Brunauer–Emmett–Teller (BET) method. Pellets prepared from the nanoparticles were tested in carbon monoxide (CO) and propane (C3H8) atmospheres at different concentrations (0–500 ppm) and operating temperatures (100, 200 and 300 °C). The pellets were very sensitive to changes in gas concentration and temperature: the response of the material rose as the concentration and temperature increased. The results showed that the MnSb2O6 nanoparticles can be a good candidate to be used as a novel gas sensor.