BMC Nutrition (Jul 2018)

Vitamin D status and body composition: a cross-sectional study among employees at a private university in Lebanon

  • Sibelle Al Hayek,
  • Jocelyne Matar Bou Mosleh,
  • Rachelle Ghadieh,
  • Jessy El Hayek Fares

DOI
https://doi.org/10.1186/s40795-018-0239-6
Journal volume & issue
Vol. 4, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background The prevalence of low vitamin D status is increasing globally, and Lebanon is not spared. The objectives of this study are to determine the prevalence and correlates of low vitamin D status, and to assess the association between percent body fat and vitamin D status, independently of obesity. Methods A cross-sectional study was performed on NDU employees. Data on dietary intake, physical activity, lifestyle, health status, and demographic variables were collected during a face-to-face interview. Anthropometric measures (weight, height and waist circumference) were measured and body composition was assessed using the bioelectrical impedance analysis (BIA) machine InBody 720 (Biospace, Seoul, Korea). The Nutritionist Pro diet analysis software version 31.0 was used to estimate dietary intake of vitamin D. Serum 25 hydroxyvitamin D (25(OH)D) was measured using enzyme linked immunosorbent assay kit (ELISA) (Calbiotech, Spring Valley, California, USA). Vitamin D status was assessed according to the National Osteoporosis Foundation (sufficiency: ≥ 75 nmol/L / ≥30 ng/mL) and the Institute of Medicine cut-offs (adequacy: ≥50 nmol/L / ≥20 ng/mL). Statistical analyses were performed by SPSS version 22. Results A total of 344 employees (50% Male) aged between 20 and 74 years participated in the study. More than half of the participants were overweight and obese. Mean serum vitamin D concentrations were 28.2 ± 13.9 ng/mL. Among participants, 37.5% of our study population had 25(OH)D ≥ 30 ng/mL, and 68.3% had 25(OH)D ≥ 20 ng/mL. Individuals with low vitamin D status had significantly higher percent body fat (PBF) (p < 0.005), and higher waist circumference (WC) (p = 0.012) than in the sufficient group, however BMI did not differ by vitamin D status. Logistic regression analysis indicated that a 1% increase in body fat increases the odds of having 25(OH)D ≤ 30 ng/mL by 8% while controlling for BMI and other confounders (p = 0.019). Conclusion This study reinforces the need for regular screening for low vitamin D status in Lebanese adults, particularly individuals at risk, including those with high risk WC, high PBF, who work indoors and have low vitamin D intake, and recommending vitamin D supplementation if needed.

Keywords