Folia Histochemica et Cytobiologica (Feb 2005)
The effect of doxorubicin and retinoids on proliferation, necrosis and apoptosis in MCF-7 breast cancer cells.
Abstract
Doxorubicin (Adriamycin) is the most active drug in the treatment of breast cancer. The aim of this study was to investigate the interaction of doxorubicin and retinoids in the inhibition of proliferation of hormone sensitive (ER+) human breast cancer cell line MCF-7 and to find out whether this combination can result in the enhancement of its therapeutic effect. As a comparison we also used estradiol and tamoxifen. We also made an attempt to elucidate the effect of these compounds on the stimulation of the apoptotic pathway in breast cancer cells. Cell proliferation in a 24-hour culture was assessed by [3H] thymidine incorporation into cancer cells and by immunocytochemical analysis of cellular cycle-related PCNA and Ki-67 antigens expression, after the incubation of the cell culture with 10, 20 and 50 nM doxorubicin (DOX), 2 nM estradiol (E2), 10 microM tamoxifen (TAM) and 1 nM, 0.01, 0.1, 1 and 10 microM of all-trans retinoid acid (ATRA). The assessment of cell viability and analysis of apoptotic and necrotic cells were performed after the 72-hour incubation of the culture with the examined substances and following apoptosis induction using acridine orange and ethidine bromide. Of the doxorubicin concentrations used in the study, 20 nM inhibited thymidine incorporation to 84.83 +/- 10.00% (control=100%). In the same culture conditions, 2 nM E2 stimulated cancer cells to 157.09 +/- 8.84%. Concentrations of 10 microM TAM and 10 microM ATRA inhibited the proliferation to 63.16 +/- 7.85% and 52.19 +/- 3.21%, respectively. A statistically significant reduction of these values was observed when 20 nM DOX was added to medium with E2 - 39.24 +/- 7.6%, TAM - 48.34 +/- 2.05% and ATRA - 21.98 +/- 1.69%, respectively; the percentage of PCNA- and Ki-67-positive cells was also reduced. Despite high antiproliferative efficacy of 20 nM DOX and 10 microM ATRA combination, the percentage of apoptotic cells was only 25 +/- 0.81%, being similar to that obtained in the culture with 20 nM DOX. The concentrations of 10, 20 and 50 nM DOX that were used to inhibit the proliferation of MCF-7 cell line were not particulary effective. The inhibitory effect was obtained when 20 nM of DOX and E2, TAM or ATRA were used simultaneously. The use of E2 caused a two-fold decrease in the percentage of proliferating cells. It was also shown that the effectiveness of DOX in combination with ATRA is significantly higher than that of DOX combined with TAM, which might suggest a valuable approach to the treatment of breast cancer.