Shanghai Jiaotong Daxue xuebao (Apr 2023)
Power System Planning Considering Demand Response Resources and Capacity Value of Energy Storage
Abstract
The access of a high proportion of renewable energy has posed new challenges to the supply reliability of the power system. The system must have sufficient capacity credit to cope with the output fluctuation and randomness of renewable energy. Due to the nonlinear relationship between energy storage capacity credit and power planning results, it is difficult to establish accurate capacity adequacy constraints for traditional power planning methods. Therefore, a generation expansion model is established, in which thermal power, renewable energy, energy storage, and demand response resources are incorporated, with the full-year hourly production simulation to ensure adequate operation flexibility and improved capacity adequacy constraint to incorporate the capacity value of energy storage and demand response resources. An iterative algorithm is designed to solve the nonlinear problem of energy storage capacity credit, and the validity of the model is verified by some regional grid in China. The results show that in the high-proportion renewable energy system, the system capacity is surplus, and the main factor affecting the system cost is the flexibility constraint. The introduction of a small amount of demand response resources can greatly reduce the system cost, which provides new ideas for power system planning at a high proportion of renewable energy.
Keywords