Pharmaceuticals (Sep 2023)
Unveiling the Chemical Profiling Antioxidant and Anti-Inflammatory Activities of Algerian <i>Myrtus communis</i> L. Essential Oils, and Exploring Molecular Docking to Predict the Inhibitory Compounds against Cyclooxygenase-2
Abstract
Considering the large spectrum of side effects caused by synthetic drugs and the development of natural alternatives utilizing Algerian flora, this study aimed to place a spotlight on the chemical profile and antioxidant and anti-inflammatory activities of Myrtus communis L. essential oils (MCEOs). In this study, essential oils (EOs) were collected via hydro-distillation of the plant’s leaves, and a chemical constituent analysis was performed using gas chromatography–mass spectrophotometry (GC–MS). The in vitro antioxidant activity was evaluated using DPPH, ABTS, and hydroxyl radical scavenging tests. The in vitro anti-inflammatory capacity was estimated by studying the antidenaturation effect using bovine serum albumin (BSA) as a protein model. The in vivo anti-inflammatory activity was carried out by utilizing the classical model of carrageenan-induced paw edema in rats, using diclofenac (DCF) as the reference drug. Moreover, the molecular interaction of the compounds obtained from the GC–MS analysis was studied within the binding site of cyclooxygenase-2 (COX-2) using an in silico approach as the confirmatory tool of the in vitro and in vivo experiments. The GC–MS analysis revealed that MCEOs were mainly composed of oxygenated monoterpenes (70.56%), oxygenated sesquiterpenes (3.1%), sesquiterpenes (4.17%), and monoterpenes (8.75%). Furthermore, 1,8-cineole was the major compound (19.05%), followed by cis-geranyl acetate (11.74%), methyl eugenol (5.58%), α-terpineol (4.62%), and β-myrcene (4.40%). MCEOs exhibited remarkable concentration-dependent free radical scavenging activity, with an IC50 of 15.317 ± 0.340 µg/mL, 18.890 ± 2.190 µg/mL, and 31.877 ± 0.742 µg/mL for DPPH, ABTS, and hydroxyl radical, respectively. The significant in vitro anti-inflammatory activity due to the inhibition of BSA denaturation was proportional to the EO concentration, where the highest value was recorded at 100 μg/mL with an approximately 63.35% percentage inhibition and an IC50 of 60.351 ± 5.832 μg/mL. MCEOs showed a good in vivo anti-inflammatory effect by limiting the development of carrageenan-induced paw thickness. The in silico study indicated that, among the 60 compounds identified by the GC–MS analysis, 9 compounds were observed to have a high binding energy to cyclooxygenase-2 as compared to diclofenac. Our study revealed that EOs from Algerian Myrtus communis L. can be considered to be a promising candidate for alleviating many debilitating health problems and may provide new insights in the fields of drug design, agriculture, and the food industry.
Keywords