Clinical and Experimental Otorhinolaryngology (Jun 2018)

Impact of Nicotine Exposure on Hair Cell Toxicity and Embryotoxicity During Zebrafish Development

  • Myung Hoon Yoo,
  • Yoon Chan Rah,
  • Saemi Park,
  • Soonil Koun,
  • Gi Jung Im,
  • Sung Won Chae,
  • Hak Hyun Jung,
  • June Choi

DOI
https://doi.org/10.21053/ceo.2017.00857
Journal volume & issue
Vol. 11, no. 2
pp. 109 – 117

Abstract

Read online

Objectives Nicotine has various adverse effects including negative impacts associated with maternal exposure. In the current study, we examined nicotine-induced damage of hair cells and embryotoxicity during zebrafish development. Methods Zebrafish embryos were exposed to nicotine at several concentrations (5, 10, 20, and 40 μM) and embryotoxicity were evaluated at 72 hours, including hatching rate, mortality, teratogenicity rate, and heart rate. Hair cells within the supraorbital (SO1 and SO2), otic (O1), and occipital (OC1) neuromasts were identified at 120 hours. Apoptosis and mitochondrial damage of hair cells were analyzed using TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling) and DASPEI (2-[4-(dimethylamino)styryl]-N-ethylpyridinium iodide) assays, respectively, and changes of ultrastructure were observed by scanning electron microscopy. Results The control group without nicotine appeared normal with overall mortality and teratogenicity rate <5%. The hatching rate and mortality rate was not significantly different according to nicotine concentration (n=400 each). The abnormal morphology rate (n=400) increased and heart rate (n=150) decreased with increasing nicotine concentration (P<0.05). Nicotine-induced hair cell damage significantly increased as nicotine concentration increased. A significantly greater number of TUNEL-positive cells (P<0.01) and markedly smaller DASPEI area (P<0.01) were shown as nicotine concentration increased. Conclusion The current results suggest that nicotine induces dose-dependent hair cell toxicity in embryos by promoting apoptosis and mitochondrial and structural damage.

Keywords