Recent Advances in Molecularly Imprinted Polymers for Antibiotic Analysis
Guangli Zhao,
Yue Zhang,
Dani Sun,
Shili Yan,
Yuhao Wen,
Yixiao Wang,
Guisheng Li,
Huitao Liu,
Jinhua Li,
Zhihua Song
Affiliations
Guangli Zhao
School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
Yue Zhang
School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
Dani Sun
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
Shili Yan
Shandong Zafex Scientific Instrument Co., Ltd., Rushan 264599, China
Yuhao Wen
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
Yixiao Wang
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
Guisheng Li
School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
Huitao Liu
College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
Jinhua Li
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
Zhihua Song
School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
The abuse and residues of antibiotics have a great impact on the environment and organisms, and their determination has become very important. Due to their low contents, varieties and complex matrices, effective recognition, separation and enrichment are usually required prior to determination. Molecularly imprinted polymers (MIPs), a kind of highly selective polymer prepared via molecular imprinting technology (MIT), are used widely in the analytical detection of antibiotics, as adsorbents of solid-phase extraction (SPE) and as recognition elements of sensors. Herein, recent advances in MIPs for antibiotic residue analysis are reviewed. Firstly, several new preparation techniques of MIPs for detecting antibiotics are briefly introduced, including surface imprinting, nanoimprinting, living/controlled radical polymerization, and multi-template imprinting, multi-functional monomer imprinting and dummy template imprinting. Secondly, several SPE modes based on MIPs are summarized, namely packed SPE, magnetic SPE, dispersive SPE, matrix solid-phase dispersive extraction, solid-phase microextraction, stir-bar sorptive extraction and pipette-tip SPE. Thirdly, the basic principles of MIP-based sensors and three sensing modes, including electrochemical sensing, optical sensing and mass sensing, are also outlined. Fourthly, the research progress on molecularly imprinted SPEs (MISPEs) and MIP-based electrochemical/optical/mass sensors for the detection of various antibiotic residues in environmental and food samples since 2018 are comprehensively reviewed, including sulfonamides, quinolones, β-lactams and so on. Finally, the preparation and application prospects of MIPs for detecting antibiotics are outlined.