The MraY Inhibitor Muraymycin D2 and Its Derivatives Induce Enlarged Cells in Obligate Intracellular <i>Chlamydia</i> and <i>Wolbachia</i> and Break the Persistence Phenotype in <i>Chlamydia</i>
Iris Löckener,
Lara Vanessa Behrmann,
Jula Reuter,
Andrea Schiefer,
Anna Klöckner,
Sebastian Krannich,
Christian Otten,
Katja Mölleken,
Satoshi Ichikawa,
Achim Hoerauf,
Tanja Schneider,
Kenneth M. Pfarr,
Beate Henrichfreise
Affiliations
Iris Löckener
Institute for Pharmaceutical Microbiology (IPM), University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
Lara Vanessa Behrmann
Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
Jula Reuter
Institute for Pharmaceutical Microbiology (IPM), University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
Andrea Schiefer
Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
Anna Klöckner
Institute for Pharmaceutical Microbiology (IPM), University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
Sebastian Krannich
Institute for Pharmaceutical Microbiology (IPM), University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
Christian Otten
Institute for Pharmaceutical Microbiology (IPM), University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
Katja Mölleken
Institute for Functional Microbial Genomics, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
Satoshi Ichikawa
Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
Achim Hoerauf
Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
Tanja Schneider
Institute for Pharmaceutical Microbiology (IPM), University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
Kenneth M. Pfarr
Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
Beate Henrichfreise
Institute for Pharmaceutical Microbiology (IPM), University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
Chlamydial infections and diseases caused by filarial nematodes are global health concerns. However, treatment presents challenges due to treatment failures potentially caused by persisting Chlamydia and long regimens against filarial infections accompanied by low compliance. A new treatment strategy could be the targeting of the reduced peptidoglycan structures involved in cell division in the obligate intracellular bacteria Chlamydia and Wolbachia, the latter being obligate endosymbionts supporting filarial development, growth, and survival. Here, cell culture experiments with C. trachomatis and Wolbachia showed that the nucleoside antibiotics muraymycin and carbacaprazamycin interfere with bacterial cell division and induce enlarged, aberrant cells resembling the penicillin-induced persistence phenotype in Chlamydia. Enzymatic inhibition experiments with purified C. pneumoniae MraY revealed that muraymycin derivatives abolish the synthesis of the peptidoglycan precursor lipid I. Comparative in silico analyses of chlamydial and wolbachial MraY with the corresponding well-characterized enzyme in Aquifex aeolicus revealed a high degree of conservation, providing evidence for a similar mode of inhibition. Muraymycin D2 treatment eradicated persisting non-dividing C. trachomatis cells from an established penicillin-induced persistent infection. This finding indicates that nucleoside antibiotics may have additional properties that can break bacterial persistence.