Journal of Infection and Public Health (Apr 2024)
Molecular detection of Listeria monocytogenes from different dairy and street food sources in North Karnataka, India
Abstract
Background: Food-borne pathogen Listeria monocytogenes is abundantly present in nature and accountable for sporadic and epidemic cases of listeriosis in humans. The objective of this study was to screen common food sources for L. monocytogenes using biochemical and molecular methods to detect and characterise its toxin genes as well as for biofilm formation. Methods: A total of 92 samples, comprising dairy and street food products, were randomly collected from various sources for this investigation. The collected samples were processed for biochemical and molecular methods to detect L. monocytogenes. Additionally, virulence factors associated genes, antibiogram profiles and biofilm formation related assays were determined. Results: L. monocytogenes presence was confirmed using molecular detection methods targeting prs and lmo1030 genes, along with MALDI-TOF MS. Following 16 S rRNA sequencing, the identified Listeria species were further categorised into two groups. L. monocytogenes was detected in two (2.17%) food samples tested (L-23 and L-74). Multiplex PCR indicated the presence of seven virulence-related genes in L. monocytogenes isolates, i.e., inlA, inlB, prfA, iap, actA, plcB, and hlyA. In addition, 17 antibiotics were tested, whereby two isolates showed resistance to clindamycin and azithromycin, while one isolate (L-74) was also resistant to nalidixic acid, co-trimoxazole, ampicillin, norfloxacin, and cefotaxime. L-23 and L-74 isolates showed biofilm formation, especially at pH 8.6 and 37°C. Conclusions: Besides the demonstration of the presence of L. monocytogenes in some dairy and street food products, this study underscores the need to increase the standards of hygiene on the one hand and the importance of the surveillance of food-borne pathogens on the other.