Actuators (Jun 2025)

Dynamic Response Analysis of Tooth Root Crack Failure in Helical Idler Gear System Under Different Working Flank Conditions

  • Hengzhe Shi,
  • Wei Li,
  • Wanlin Zhou

DOI
https://doi.org/10.3390/act14060292
Journal volume & issue
Vol. 14, no. 6
p. 292

Abstract

Read online

Helical idler gear transmission systems can adapt to high-speed, heavy-load working environments and are thus widely used in aerospace, shipbuilding, and other heavy industry sectors. Root crack is one of the common fault types. Prior studies generally only considered cracks at a single working flank, lacking comparative analysis between the crack at the working flank and the non-working flank. This paper examines the dynamic response of helical idler gears with root cracks at different working flanks, comparing dynamic response differences between working and non-working flank cracks. First, a comprehensive dynamics model of the helical idler gear system is established. Second, the influence of root crack location (the working flank or the non-working flank) on time-varying meshing stiffness is considered based on potential energy method, and a flexible model is established by finite element method for the faulty gear. Finally, solution results of the rigid-flexible coupling dynamics model are analyzed. The dynamic response signal characteristics of root cracks at the working flank and the non-working flank are analyzed in time domain, frequency domain and time frequency domain, respectively. Corresponding experiments are designed based on the FZG experimental platform, and the experimental results are in good agreement with the simulation results, which verified the accuracy of the model.

Keywords