Environmental Research Letters (Jan 2020)
The health burden of fall, winter and spring extreme heat events in Southern California and contribution of Santa Ana Winds
Abstract
Background : Extreme heat is associated with increased morbidity but most studies examine this relationship in warm seasons. In Southern California, Santa Ana winds (SAWs) are associated with high temperatures during the fall, winter and spring, especially in the coastal region. Objective s: Our aim was to examine the relationship between hospitalizations and extreme heat events in the fall, winter and spring, and explore the potential interaction with SAWs. Methods: Hospitalizations from 1999–2012 were obtained from the Office of Statewide Health Planning and Development Patient Discharge Data. A time-stratified case crossover design was employed to investigate the association between off-season heat and hospitalizations for various diagnoses. We examined the additive interaction of SAWs and extreme heat events on hospitalizations. Results : Over 1.5 million hospitalizations occurred in the Southern California coastal region during non-summer seasons. The 99th percentile-based thresholds that we used to define extreme heat events varied from a maximum temperature of 22.8 °C to 35.1 °C. In the fall and spring, risk of hospitalization increased for dehydration (OR: 1.23, 95% CI: 1.04, 1.45 and OR: 1.47 95% CI: 1.25, 1.71, respectively) and acute renal failure (OR: 1.35, 95% CI: 1.15, 1.58 and OR: 1.39, 95% CI: 1.19, 1.63, respectively) during 1-day extreme heat events. We also found an association between 1-day extreme heat events and hospitalization for ischemic stroke, with the highest risk observed in December. The results indicate that SAWs correspond to extreme heat events, particularly in the winter. Finally, we found no additive interaction with SAWs. Discussion : Results suggest that relatively high temperatures in non-summer months are associated with health burdens for several hospitalization outcomes. Heat action plans should consider decreasing the health burden of extreme heat events year-round.
Keywords