Graphene plasmons-enhanced terahertz response assisted by metallic gratings
Yu Anqi,
Yang Zhenyu,
Cai Miao,
Zhang Huiping,
Tian Zhengan,
Guo Xuguang,
Wang Lanxia,
Balakin Alexei V.,
Shkurinov Alexander P.,
Zhu YiMing
Affiliations
Yu Anqi
Shanghai Key Lab of Modern Optical System, Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai200093, China
Yang Zhenyu
Shanghai Key Lab of Modern Optical System, Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai200093, China
Cai Miao
Shanghai Key Lab of Modern Optical System, Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai200093, China
Zhang Huiping
Shanghai Key Lab of Modern Optical System, Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai200093, China
Tian Zhengan
Shanghai International Travel Health Care Center (Shanghai Customs Port Clinic), 2090 Jinqiao Road, Shanghai200125, China
Guo Xuguang
Shanghai Key Lab of Modern Optical System, Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai200093, China
Wang Lanxia
Shanghai Key Lab of Modern Optical System, Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai200093, China
Balakin Alexei V.
Shanghai Key Lab of Modern Optical System, Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai200093, China
Shkurinov Alexander P.
Shanghai Key Lab of Modern Optical System, Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai200093, China
Zhu YiMing
Shanghai Key Lab of Modern Optical System, Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai200093, China
Terahertz detectors based on two-dimensional Dirac materials offer a new approach for room-temperature terahertz detection with high response and low noise. However, these devices can hardly show high response over a broad frequency range, mainly due to the poor absorption caused by their ultrathin nature. Here we apply metallic gratings to enhance the excitation efficiency of graphene plasmons. When nonzero source-drain bias is applied, graphene plasmons can generate terahertz response orthogonal to the polarization of the incidence. The response is attributed to the orthogonal overdamped plasmon rectification effect, and graphene plasmons-enhanced photo-thermoelectric effect. By comparing the normalized on/off ratio, the metallic gratings are found to effectively enhance the coupling efficiency between graphene plasmons and THz incidence, and thus the absorption and responsivity. The results are beneficial for improving the response of room temperature THz detectors.