Baseline <sup>18</sup>F-FDG PET/CT Radiomics in Classical Hodgkin’s Lymphoma: The Predictive Role of the Largest and the Hottest Lesions
Elizabeth Katherine Anna Triumbari,
Roberto Gatta,
Elena Maiolo,
Marco De Summa,
Luca Boldrini,
Marius E. Mayerhoefer,
Stefan Hohaus,
Lorenzo Nardo,
David Morland,
Salvatore Annunziata
Affiliations
Elizabeth Katherine Anna Triumbari
Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
Roberto Gatta
Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
Elena Maiolo
Ematologia, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
Marco De Summa
Medipass S.p.a. Integrative Service PET/CT–Radiofarmacy TracerGLab, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
Luca Boldrini
Radiomics, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
Marius E. Mayerhoefer
Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria
Stefan Hohaus
Ematologia, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
Lorenzo Nardo
Department of Radiology, UC Davis, Sacramento, CA 95817, USA
David Morland
Unità di Medicina Nucleare, GSTeP Radiofarmacia, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
Salvatore Annunziata
Unità di Medicina Nucleare, GSTeP Radiofarmacia, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
This study investigated the predictive role of baseline 18F-FDG PET/CT (bPET/CT) radiomics from two distinct target lesions in patients with classical Hodgkin’s lymphoma (cHL). cHL patients examined with bPET/CT and interim PET/CT between 2010 and 2019 were retrospectively included. Two bPET/CT target lesions were selected for radiomic feature extraction: Lesion_A, with the largest axial diameter, and Lesion_B, with the highest SUVmax. Deauville score at interim PET/CT (DS) and 24-month progression-free-survival (PFS) were recorded. Mann–Whitney test identified the most promising image features (p < 0.05) from both lesions with regards to DS and PFS; all possible radiomic bivariate models were then built through a logistic regression analysis and trained/tested with a cross-fold validation test. The best bivariate models were selected based on their mean area under curve (mAUC). A total of 227 cHL patients were included. The best models for DS prediction had 0.78 ± 0.05 maximum mAUC, with a predominant contribution of Lesion_A features to the combinations. The best models for 24-month PFS prediction reached 0.74 ± 0.12 mAUC and mainly depended on Lesion_B features. bFDG-PET/CT radiomic features from the largest and hottest lesions in patients with cHL may provide relevant information in terms of early response-to-treatment and prognosis, thus representing an earlier and stronger decision-making support for therapeutic strategies. External validations of the proposed model are planned.