NeuroImage (May 2023)

Mixed emotions to social situations: An fMRI investigation

  • Ryan J. Murray,
  • Sylvia D. Kreibig,
  • Corinna Pehrs,
  • Patrik Vuilleumier,
  • James J. Gross,
  • Andrea C. Samson

Journal volume & issue
Vol. 271
p. 119973

Abstract

Read online

Background: Neuroscience research has generally studied emotions each taken in isolation. However, mixed emotional states (e.g., the co-occurrence of amusement and disgust, or sadness and pleasure) are common in everyday life. Psychophysiological and behavioral evidence suggests that mixed emotions may have response profiles that are distinguishable from their constituent emotions. Yet, the brain bases of mixed emotions remain unresolved. Methods: We recruited 38 healthy adults who viewed short, validated film clips, eliciting either positive (amusing), negative (disgusting), neutral, or mixed (a mix of amusement and disgust) emotional states, while brain activity was assessed by functional magnetic resonance imaging (fMRI). We assessed mixed emotions in two ways: first by comparing neural reactivity to ambiguous (mixed) with that to unambiguous (positive and negative) film clips and second by conducting parametric analyses to measure neural reactivity with respect to individual emotional states. We thus obtained self-reports of amusement and disgust after each clip and computed a minimum feeling score (shared minimum of amusement and disgust) to quantify mixed emotional feelings. Results: Both analyses revealed a network of the posterior cingulate (PCC), medial superior parietal lobe (SPL)/precuneus, and parieto-occipital sulcus to be involved in ambiguous contexts eliciting mixed emotions. Conclusion: Our results are the first to shed light on the dedicated neural processes involved in dynamic social ambiguity processing. They suggest both higher-order (SPL) and lower-order (PCC) processes may be needed to process emotionally complex social scenes.

Keywords