Journal of Biological Engineering (Jun 2023)

Development of a universal, oriented antibody immobilization method to functionalize vascular prostheses for enhanced endothelialization for potential clinical application

  • Qiuwang Zhang,
  • Sebastian Duncan,
  • Daniel A. Szulc,
  • Charles de Mestral,
  • Michael JB Kutryk

DOI
https://doi.org/10.1186/s13036-023-00356-6
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Thrombosis is a common cause of vascular prosthesis failure. Antibody coating of prostheses to capture circulating endothelial progenitor cells to aid endothelialization on the device surface appears a promising solution to prevent thrombus formation. Compared with random antibody immobilization, oriented antibody coating (OAC) increases antibody-antigen binding capacity and reduces antibody immunogenicity in vivo. Currently, few OAC methods have been documented, with none possessing clinical application potential. Results Dopamine and the linker amino-PEG8-hydrazide-t-boc were successfully deposited on the surface of cobalt chromium (CC) discs, CC stents and expanded polytetrafluoroethylene (ePTFE) grafts under a slightly basic condition. CD34 antibodies were immobilized through the reaction between aldehydes in the Fc region created by oxidation and hydrazides in the linker after t-boc removal. CD34 antibody-coated surfaces were integral and smooth as shown by scanning electron microscopy (SEM), had significantly reduced or no substrate-specific signals as revealed by X-ray photoelectron spectroscopy, were hospitable for HUVEC growth as demonstrated by cell proliferation assay, and specifically bound CD34 + cells as shown by cell binding testing. CD34 antibody coating turned hydrophobic property of ePTFE grafts to hydrophilic. In a porcine carotid artery interposition model, a confluent monolayer of cobblestone-shaped CD31 + endothelial cells on the luminal surface of the CD34 antibody coated ePTFE graft were observed. In contrast, thrombi and fibrin fibers on the bare graft, and sporadic cells on the graft coated by chemicals without antibodies were seen. Conclusion A universal, OAC method was developed. Our in vitro and in vivo data suggest that the method can be potentially translated into clinical application, e.g., modifying ePTFE grafts to mitigate their thrombotic propensity and possibly provide for improved long-term patency for small-diameter grafts.

Keywords