Scientific Reports (Jan 2021)
Formation environments and mechanisms of multistage paleokarst of Ordovician carbonates in Southern North China Basin
Abstract
Abstract With the reduction of oil and gas reserves and the increase of mining difficulty in Northern China, the carbonate rocks in Southern North China Basin are becoming a significant exploration target for carbonate reservoirs. However, the development characteristics, formation stages, formation environments and mechanisms of the carbonate reservoirs in Southern North China Basin are still unclear, which caused the failures of many oil and gas exploration wells. This study focused on addressing this unsolved issue from the Ordovician carbonate paleokarst in the Huai-Fu Basin, which is located in the southeast of Southern North China Basin and one of the key areas for oil and gas exploration. Based on petrology, mineralogy and geochemical data, pore types, distribution characteristics, and formation stages of the Ordovician paleokarst were analyzed. Then, in attempt to define the origins of porosity development, the formation environments and mechanisms were illustrated. The results of this study showed that pore types of the Ordovician carbonates in the Huai-Fu Basin are mainly composed of intragranular pores, intercrystalline (intergranular) pores, dissolution pores (vugs), fractures, channels, and caves, which are usually in fault and fold zones and paleoweathering crust. Furthermore, five stages and five formation environments of the Ordovician paleokarst were identified. Syngenetic karst, eogenetic karst, and paleoweathering crust karst were all developed in a relatively open near-surface environment, and their formations are mainly related to meteoric water dissolution. Mesogenetic karst was developed in a closed buried environment, and its formation is mainly related to the diagenesis of organic matters and thermochemical sulfate reduction in the Permian-Carboniferous strata. Hydrothermal (water) karst was developed in a deep-buried and high-temperature environment, where hydrothermal fluids (waters) migrated upward through structures such as faults and fractures to dissolve carbonate rocks and simultaneously deposited hydrothermal minerals and calcites. Lastly, a paleokarst evolution model, combined with the related porosity evolution processes, nicely revealed the Ordovician carbonate reservoir development. This study provides insights and guidance for further oil and gas exploration in the Southern North China Basin, and also advances our understanding of the genesis of carbonate paleokarst around the world.