Heliyon (Apr 2024)

Efficacy tumor therapeutic applications of stimuli-responsive block copolymer-based nano-assemblies

  • Jie Zhou,
  • Rui Yang,
  • Yu Chen,
  • Daozhen Chen

Journal volume & issue
Vol. 10, no. 7
p. e28166

Abstract

Read online

Block copolymers are composed of two or more blocks or segments with different chemical properties via various chemical bonds, which can assemble into nanoparticles with a “core-shell” structure. Due to the benefits of simple functionalization, superior drug-loading capacity, and good biocompatibility, various nano-assemblies based on block copolymers have become widely applied in the treatment of cancers in recent years. These nano-assemblies serve as carriers for anti-tumor bioactive, enhancing drug stability and prolonging their circulation time in vivo, which can reduce the toxic side effects of drugs and improve the therapeutic effect. However, the complex and heterogeneous tumor microenvironment poses challenges to the therapeutic efficacy of these nano-assemblies, having the result in the occurrence of drug resistance and the recurrence of tumors. Consequently, a diverse array of stimuli-responsive nano-assemblies has been devised in order to surmount these obstacles. This article provides a comprehensive overview of the utilization of stimuli-responsive nano-assemblies derived from block copolymers in the context of tumor treatment. The review summarizes block polymers responsive to internal stimuli (like ROS, redox, pH, and enzymes) and external stimuli (like light, and temperature), and discusses current challenges and prospects in this field, aiming to provide novel insights for clinical applications.

Keywords