PLoS ONE (Jan 2011)

Permeation through the cell membrane of a boron-based β-lactamase inhibitor.

  • Manuela Minozzi,
  • Gianluca Lattanzi,
  • Roland Benz,
  • Maria P Costi,
  • Alberto Venturelli,
  • Paolo Carloni

DOI
https://doi.org/10.1371/journal.pone.0023187
Journal volume & issue
Vol. 6, no. 8
p. e23187

Abstract

Read online

Bacteria express beta-lactamases to counteract the beneficial action of antibiotics. Benzo[b]-thiophene-2-boronic acid (BZB) derivatives are β-lactamase inhibitors and, as such, promising compounds to be associated with β-lactam antibacterial therapies. The uncharged form of BZB, in particular, is suggested to diffuse through the outer membrane of gram negative bacteria. In this study, through the combination of electrophysiological experiments across reconstituted PC/n-decane bilayers and metadynamics-based free energy calculations, we investigate the permeation mechanism of boronic compounds. Our experimental data establish that BZB passes through the membrane, while computer simulations provide hints for the existence of an aqueous, water-filled monomolecular channel. These findings provide new perspectives for the design of boronic acid derivatives with high membrane permeability.