Cells (Mar 2023)

The Activation of PPARγ by (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic Acid Counteracts the Epithelial–Mesenchymal Transition Process in Skin Carcinogenesis

  • Enrica Flori,
  • Sarah Mosca,
  • Giorgia Cardinali,
  • Stefania Briganti,
  • Monica Ottaviani,
  • Daniela Kovacs,
  • Isabella Manni,
  • Mauro Truglio,
  • Arianna Mastrofrancesco,
  • Marco Zaccarini,
  • Carlo Cota,
  • Giulia Piaggio,
  • Mauro Picardo

DOI
https://doi.org/10.3390/cells12071007
Journal volume & issue
Vol. 12, no. 7
p. 1007

Abstract

Read online

Cutaneous squamous cell carcinoma (cSCC) is the most common UV-induced keratinocyte-derived cancer, and its progression is characterized by the epithelial–mesenchymal transition (EMT) process. We previously demonstrated that PPARγ activation by 2,4,6-octatrienoic acid (Octa) prevents cutaneous UV damage. We investigated the possible role of the PPARγ activators Octa and the new compound (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic acid (A02) in targeting keratinocyte-derived skin cancer. Like Octa, A02 exerted a protective effect against UVB-induced oxidative stress and DNA damage in NHKs. In the squamous cell carcinoma A431 cells, A02 inhibited cell proliferation and increased differentiation markers’ expression. Moreover, Octa and even more A02 counteracted the TGF-β1-dependent increase in mesenchymal markers, intracellular ROS, the activation of EMT-related signal transduction pathways, and cells’ migratory capacity. Both compounds, especially A02, counterbalanced the TGF-β1-induced cell membrane lipid remodeling and the release of bioactive lipids involved in EMT. In vivo experiments on a murine model useful to study cell proliferation in adult animals showed the reduction of areas characterized by active cell proliferation in response to A02 topical treatment. In conclusion, targeting PPARγ may be useful for the prevention and treatment of keratinocyte-derived skin cancer.

Keywords