Applied Sciences (May 2021)

Optimal Design of Earthquake-Resistant Buildings Based on Neural Network Inversion

  • Carlo Calledda,
  • Augusto Montisci,
  • Maria Cristina Porcu

DOI
https://doi.org/10.3390/app11104654
Journal volume & issue
Vol. 11, no. 10
p. 4654

Abstract

Read online

An effective seismic design entails many issues related to the capacity-based assessment of the non-linear structural response under strong earthquakes. While very powerful structural calculation programs are available to assist the designer in the code-based seismic analysis, an optimal choice of the design parameters leading to the best performance at the lowest cost is not always assured. The present paper proposes a procedure to cost-effectively design earthquake-resistant buildings, which is based on the inversion of an artificial neural network and on an optimization algorithm for the minimum total cost under building code constraints. An exemplificative application of the method to a reinforced-concrete multi-story building, with seismic demands corresponding to a medium-seismicity Italian zone, is shown. Three design-governing parameters are assumed to build the input matrix, while eight capacity-design target requirements are assigned for the output dataset. A non-linear three-dimensional concentrated plasticity model of the structure is implemented, and time-history dynamic analyses are carried out with spectrum-consistent ground motions. The results show the promising ability of the proposed approach for the optimal design of earthquake-resistant structures.

Keywords