ESAIM: Proceedings and Surveys (Jan 2023)

Mortensen observer for a class of variational inequalities – lost equivalence with stochastic filtering approaches

  • Chaintron Louis-Pierre,
  • González Álvaro Mateos,
  • Mertz Laurent,
  • Moireau Philippe

DOI
https://doi.org/10.1051/proc/202373130
Journal volume & issue
Vol. 73
pp. 130 – 157

Abstract

Read online

We address the problem of deterministic sequential estimation for a nonsmooth dynamics governed by a variational inequality. An example of such dynamics is the Skorokhod problem with a reflective boundary condition. For smooth dynamics, Mortensen introduced in 1968 a nonlinear estimator based on likelihood maximisation. Then, starting with Hijab in 1980, several authors established a connection between Mortensen’s approach and the vanishing noise limit of the robust form of the so-called Zakai equation. In this paper, we investigate to what extent these methods can be developed for dynamics governed by a variational inequality. On the one hand, we address this problem by relaxing the inequality constraint by penalization: this yields an approximate Mortensen estimator relying on an approximating smooth dynamics. We verify that the equivalence between the deterministic and stochastic approaches holds through a vanishing noise limit. On the other hand, inspired by the smooth dynamics approach, we study the vanishing viscosity limit of the Hamilton-Jacobi equation satisfied by the Hopf-Cole transform of the solution of the robust Zakai equation. In contrast to the case of smooth dynamics, the zero-noise limit of the robust form of the Zakai equation cannot be understood in our case from the Bellman equation on the value function arising in Mortensen’s procedure. This unveils a violation of equivalence for dynamics governed by a variational inequality between the Mortensen approach and the low noise stochastic approach for nonsmooth dynamics.