Scientific Reports (Feb 2025)
Metformin modulates FJX1 via upregulation of Hsa-miR-1306-3p to suppress colon adenocarcinoma viability
Abstract
Abstract Metformin, widely used for the treatment of type 2 diabetes, has recently gained attention for its potential anticancer properties. Several studies have shown that metformin treatment inhibits cell viability in colon adenocarcinoma (COAD); however, the research related to the tumor-node-metastasis (TNM) stage is limited. As COAD is frequently diagnosed at an advanced stage, understanding the genetic factors that regulate the pathogenesis of COAD at each TNM stage and the effects of metformin for potential treatment. Therefore, we identified differentially expressed factors at the TNM stage in metformin-treated COAD cells and investigated their regulatory mechanisms using microRNAs (miRNAs). Through bioinformatics analyses, four-jointed box kinase 1 (FJX1) and hsa-miR-1306-3p were identified as differentially expressed in COAD upon metformin treatment. Metformin treatment significantly reduced cell viability, with an observed decrease of approximately 50%. Analysis using quantitative real-time PCR showed an increase in hsa-miR-1306-3p and a decrease in FJX1 expression upon metformin treatment compared to untreated cells. Luciferase assay confirmed the sequence-specific binding of hsa-miR-1306-3p to FJX1. These findings highlight the potential of metformin as a therapeutic agent for COAD by modulating FJX1 expression via upregulation of hsa-miR-1306-3p, revealing novel avenues for COAD treatment.
Keywords