Reactivity is a key component for autonomous vehicles navigating on natural terrains in order to safely avoid unknown obstacles. To this end, it is necessary to continuously assess traversability by processing on-board sensor data. This paper describes the case study of mobile robot Andabata that classifies traversable points from 3D laser scans acquired in motion of its vicinity to build 2D local traversability maps. Realistic robotic simulations with Gazebo were employed to appropriately adjust reactive behaviors. As a result, successful navigation tests with Andabata using the robot operating system (ROS) were performed on natural environments at low speeds.