IEEE Access (Jan 2022)
Deep Human Motion Detection and Multi-Features Analysis for Smart Healthcare Learning Tools
Abstract
Unhealthy lifestyle causes several chronic diseases in humans. Many products are introduced to avoid such illnesses and provide e-learning-based healthcare services. However, the main focus is still on providing comfortable and reliable solutions. Inertial measurement units (IMU) are considered as the most independent and non-intrusive way to monitor human health via motion patterns detection. In this paper, a deep-learning-based human motion detection approach for smart healthcare learning tool has been proposed. A novel hybrid descriptors-based pre-classification and multi-features analysis algorithm is proposed to classify the human motion for healthcare e-learning. For pre-processing, a quaternion-based filter is used to filter the IMU signals. An experiment is performed over the acceleration signals using minimum and average gravity removal techniques. Next, signal segmentation of multiple time intervals has been applied to segment data and ultimately compare the results to decide which type provides better performance. Then, pre-classification is done using motion pattern identification in the form of active and passive patterns. During the features analysis phase, features are extracted based on both active and passive motion patterns. Further, an orthogonal fuzzy neighborhood discriminant analysis technique has been used to reduce the dimensionality of the extracted feature vector. Finally, a deep learner known as long-short term memory has been applied to classify the actions of both active and passive motion features for healthcare e-learning systems. For this purpose, we utilized two datasets: REALDISP and wearable computing. The experimental results show that our proposed system for smart healthcare learning outperformed other state-of-the-art systems. The proposed implemented system provided 87.35% accuracy for REALDISP and 85.18% accuracy for wearable computing datasets. Furthermore, the classified motion patterns are provided to a smart healthcare advisor in order to provide live feedback about human health for immediate action.
Keywords