BMC Genomics (Sep 2021)

C-terminal domain phosphatase-like 1 (CPL1) is involved in floral transition in Arabidopsis

  • Chen Yuan,
  • Jingya Xu,
  • Qianqian Chen,
  • Qinggang Liu,
  • Yikai Hu,
  • Yicheng Jin,
  • Cheng Qin

DOI
https://doi.org/10.1186/s12864-021-07966-8
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background RNA polymerase II plays critical roles in transcription in eukaryotic organisms. C-terminal Domain Phosphatase-like 1 (CPL1) regulates the phosphorylation state of the C-terminal domain of RNA polymerase II subunit B1, which is critical in determining RNA polymerase II activity. CPL1 plays an important role in miRNA biogenesis, plant growth and stress responses. Although cpl1 mutant showes delayed-flowering phenotype, the molecular mechanism behind CPL1’s role in floral transition is still unknown. Results To study the role of CPL1 during the floral transition, we first tested phenotypes of cpl1-3 mutant, which harbors a point-mutation. The cpl1-3 mutant contains a G-to-A transition in the second exon, which results in an amino acid substitution from Glu to Lys (E116K). Further analyses found that the mutated amino acid (Glu) was conserved in these species. As a result, we found that the cpl1-3 mutant experienced delayed flowering under both long- and short-day conditions, and CPL1 is involved in the vernalization pathway. Transcriptome analysis identified 109 genes differentially expressed in the cpl1 mutant, with 2 being involved in floral transition. Differential expression of the two flowering-related DEGs was further validated by qRT-PCR. Conclusions Flowering genetic pathways analysis coupled with transciptomic analysis provides potential genes related to floral transition in the cpl1-3 mutant, and a framework for future studies of the molecular mechanisms behind CPL1’s role in floral transition.

Keywords