The Spike Glycoprotein of SARS-CoV-2 Binds to β1 Integrins Expressed on the Surface of Lung Epithelial Cells
Eun Jeong Park,
Phyoe Kyawe Myint,
Michael Gyasi Appiah,
Samuel Darkwah,
Siqingaowa Caidengbate,
Atsushi Ito,
Eri Matsuo,
Eiji Kawamoto,
Arong Gaowa,
Motomu Shimaoka
Affiliations
Eun Jeong Park
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan
Phyoe Kyawe Myint
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan
Michael Gyasi Appiah
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan
Samuel Darkwah
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan
Siqingaowa Caidengbate
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan
Atsushi Ito
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan
Eri Matsuo
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan
Eiji Kawamoto
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan
Arong Gaowa
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan
Motomu Shimaoka
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City 514-8507, Mie, Japan
The spike glycoprotein attached to the envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to and exploits angiotensin-converting enzyme 2 (ACE2) as an entry receptor to infect pulmonary epithelial cells. A subset of integrins that recognize the arginyl–glycyl–aspartic acid (RGD) sequence in the cognate ligands has been predicted in silico to bind the spike glycoprotein and, thereby, to be exploited for viral infection. Here, we show experimental evidence that the β1 integrins predominantly expressed on human pulmonary epithelial cell lines and primary mouse alveolar epithelial cells bind to this spike protein. The cellular β1 integrins support adhesive interactions with the spike protein independently of ACE2, suggesting the possibility that the β1 integrins may function as an alternative receptor for SARS-CoV-2, which could be targeted for the prevention of viral infections.