Nanomaterials (Jun 2021)

Beyond Charge Transfer: The Impact of Auger Recombination and FRET on PL Quenching in an rGO-QDs System

  • Anton A. Babaev,
  • Anastasiia V. Sokolova,
  • Sergei A. Cherevkov,
  • Kevin Berwick,
  • Alexander V. Baranov,
  • Anatoly V. Fedorov,
  • Aleksandr P. Litvin

DOI
https://doi.org/10.3390/nano11061623
Journal volume & issue
Vol. 11, no. 6
p. 1623

Abstract

Read online

PL intensity quenching and the PL lifetime reduction of fluorophores located close to graphene derivatives are generally explained by charge and energy transfer processes. Analyzing the PL from PbS QDs in rGO/QD systems, we observed a substantial reduction in average PL lifetimes with an increase in rGO content that cannot be interpreted solely by these two processes. To explain the PL lifetime dependence on the rGO/QD component ratio, we propose a model based on the Auger recombination of excitations involving excess holes left in the QDs after the charge transfer process. To validate the model, we conducted additional experiments involving the external engineering of free charge carriers, which confirmed the role of excess holes as the main QD PL quenching source. A mathematical simulation of the model demonstrated that the energy transfer between neighboring QDs must also be considered to explain the experimental data carefully. Together, Auger recombination and energy transfer simulation offers us an excellent fit for the average PL lifetime dependence on the component ratio of the rGO/QD system.

Keywords