PLoS ONE (Jan 2022)
Unusual bromine enrichment in the gastric mill and setae of the hadal amphipod Hirondellea gigas
Abstract
The hadal amphipod Hirondellea gigas is an emblematic animal of the Pacific trenches, and has a number of special adaptations to thrive in this ‘extreme’ environment, which includes the deepest part of the Earth’s ocean. One such adaptation that has been suggested is the presence of an ‘aluminum gel shield’ on the surface of its body in order to prevent the dissolution of calcitic exoskeleton below the carbonate compensation depth. However, this has not been investigated under experimental conditions that sufficiently prevent aluminum artefacts, and the possibility of other elements with similar characteristic X-ray energy as aluminum (such as bromine) has not been considered. Here, we show with new electron microscopy data gathered under optimized conditions to minimize aluminum artefacts that H. gigas actually does not have an aluminum shield–instead many parts of its body are enriched in bromine, particularly gastric ossicles and setae. Results from elemental analyses pointed to the use of calcite partially substituted with magnesium by H. gigas in its exoskeleton, in order to suppress dissolution. Our results exemplify the necessity of careful sample preparation and analysis of the signals in energy-dispersive X-ray spectroscopic analysis, and the importance of analyses at different electron energies.