Microorganisms (May 2022)

Overcoming Poor Transgene Expression in the Wild-Type <i>Chlamydomonas</i> Chloroplast: Creation of Highly Mosquitocidal Strains of <i>Chlamydomonas reinhardtii</i>

  • Obed W. Odom,
  • Seongjoon Kang,
  • Caleb Ferguson,
  • Carrie Chen,
  • David L. Herrin

DOI
https://doi.org/10.3390/microorganisms10061087
Journal volume & issue
Vol. 10, no. 6
p. 1087

Abstract

Read online

High-level expression of transgenes in the chloroplast of wild-type Chlamydomonas reinhardtii (C. reinhardtii) remains challenging for many genes (e.g., the cry toxin genes from Bacillus thuringiensis israelensis). The bottleneck is presumed to be post-transcriptional and mediated by the 5′ element and the coding region. Using 5′ elements from highly expressed photosynthesis genes such as atpA did not improve the outcome with cry11A regardless of the promoter. However, when we employed the 5′ UTR from mature rps4 mRNA with clean fusions to promoters, production of the rCry11A protein became largely promoter-dependent. The best results were obtained with the native 16S rrn promoter (−91 to −1). When it was fused to the mature 5′ rps4 UTR, rCry11A protein levels were ~50% higher than was obtained with the inducible system, or ~0.6% of total protein. This level was sufficient to visualize the 73-kDa rCry11A protein on Coomassie-stained gels of total algal protein. In addition, analysis of the expression of these transgenes by RT-PCR indicated that RNA levels roughly correlated with protein production. Live cell bioassays using the best strains as food for 3rd instar Aedes aegypti larvae showed that most larvae were killed even when the cell concentration was as low as 2 × 104 cells/mL. Finally, the results indicate that these highly toxic strains are also quite stable, and thus represent a key milestone in using C. reinhardtii for mosquito control.

Keywords