Buildings (Oct 2024)
Investigation on the Bearing Performance of a Single Pile in Shallow Reinforced Soft Soil Foundation under Horizontal Load
Abstract
The overall reinforcement of soft soil foundation has the disadvantages of large engineering quantity and high cost. When the pile foundation bears horizontal loads in the soil, the mechanical properties of the soil near the surface have a greater impact on it compared to the deep soil. Therefore, studying the influence of shallow soil reinforcement on the horizontal bearing capacity of pile foundations has important engineering significance. Studying the influence of shallow soft soil reinforcement around piles on the horizontal bearing performance of piles is of great significance for improving the economic efficiency of pile foundation reinforcement technology in soft soil areas. In this paper, seven pile-soil finite element models are established based on ABAQUS 2022 software to study the influence of shallow reinforcement on the horizontal bearing capacity of single pile. The models were established on the basis of a field test and its validity was verified. The influence of different reinforcement degrees on the horizontal bearing capacity of piles is analyzed by taking the reinforcement width and reinforcement depth as variables. The results indicate that shallow ground improvement significantly enhances the horizontal bearing capacity of the pile. The horizontal bearing capacity of the pile is increased by 83.0%, 104.3%, and 224.4%, respectively, corresponding to a reinforcement width of 2 times, 3 times, and 4 times the diameter of the pile, respectively. With the increase of the reinforcement width, the bending moment and deformation of the pile under the same horizontal load decrease significantly, while it has no significant effect on the location of the maximum bending moment of the pile. The bearing capacity of the pile foundation gradually increases with the increase of the reinforcement depth. Compared with the unreinforced situation, the horizontal bearing capacity of the pile body is increased by 224.4%, 361.3%, and 456.8%, respectively, corresponding to a reinforcement depth of 0.1 times, 0.2 times, and 0.3 times the pile length. As the reinforcement depth increases, the corresponding increase in bearing capacity does not increase linearly, but gradually decreases. This indicates that blindly carrying out deep soil reinforcement without comprehensive evaluation is not advisable.
Keywords