Frontiers in Plant Science (Nov 2016)

Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops

  • M. Awais Khan,
  • Dorcus Gemenet,
  • Arthur Villordon

DOI
https://doi.org/10.3389/fpls.2016.01584
Journal volume & issue
Vol. 7

Abstract

Read online

The challenge to produce more food for a rising global population on diminishing agricultural land is complicated by the effects of climate change on agricultural productivity. Although great progress has been made in crop improvement, so far most efforts have targeted above-ground traits. Roots are essential for plant adaptation and productivity, but are less studied due to the difficulty of observing them during the plant life cycle. Root system architecture, made up of structural features like root length, spread, number, and length of lateral roots, among others, exhibits great plasticity in response to environmental changes, and could be critical to developing crops with more efficient roots. Much of the research on root traits has thus far focused on the most common cereal crops and model plants. As cereal yields have reached their yield potential in some regions, understanding their root system may help overcome these plateaus. However, root and tuber crops such as potato, sweetpotato, cassava, and yam may hold more potential for providing food security in the future, and knowledge of their root system additionally focuses directly on the edible portion. Root-trait modeling for multiple stress scenarios, together with high-throughput phenotyping and genotyping techniques, robust databases, and data analytical pipelines, may provide a valuable base for a truly inclusive ‘green revolution’. In the current review, we discuss root system architecture with special reference to root and tuber crops, and how knowledge on genetics of root system architecture can be manipulated to improve their tolerance to abiotic stresses.

Keywords