BMC Cancer (Nov 2022)

Radiomics-based prediction of response to immune checkpoint inhibitor treatment for solid cancers using computed tomography: a real-world study of two centers

  • Yang Yu,
  • Yuping Bai,
  • Peng Zheng,
  • Na Wang,
  • Xiaobo Deng,
  • Huanhuan Ma,
  • Rong Yu,
  • Chenhui Ma,
  • Peng Liu,
  • Yijing Xie,
  • Chen Wang,
  • Hao Chen

DOI
https://doi.org/10.1186/s12885-022-10344-6
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Immune checkpoint inhibitors (ICIs) represent an approved treatment for various cancers; however, only a small proportion of the population is responsive to such treatment. We aimed to develop and validate a plain CT-based tool for predicting the response to ICI treatment among cancer patients. Methods Data for patients with solid cancers treated with ICIs at two centers from October 2019 to October 2021 were randomly divided into training and validation sets. Radiomic features were extracted from pretreatment CT images of the tumor of interest. After feature selection, a radiomics signature was constructed based on the least absolute shrinkage and selection operator regression model, and the signature and clinical factors were incorporated into a radiomics nomogram. Model performance was evaluated using the training and validation sets. The Kaplan–Meier method was used to visualize associations with survival. Results Data for 122 and 30 patients were included in the training and validation sets, respectively. Both the radiomics signature (radscore) and nomogram exhibited good discrimination of response status, with areas under the curve (AUC) of 0.790 and 0.814 for the training set and 0.831 and 0.847 for the validation set, respectively. The calibration evaluation indicated goodness-of-fit for both models, while the decision curves indicated that clinical application was favorable. Both models were associated with the overall survival of patients in the validation set. Conclusions We developed a radiomics model for early prediction of the response to ICI treatment. This model may aid in identifying the patients most likely to benefit from immunotherapy.

Keywords