Next Sustainability (Jan 2025)

Effect of glass fiber hybridization and radiation treatment to improve the performance of sustainable natural fiber-based hybrid (jute/glass) composites

  • S.H. Mahmud,
  • S.C. Das,
  • A. Saha,
  • T. Islam,
  • D. Paul,
  • M.W. Akram,
  • M.S. Jahan,
  • M.Z.I. Molla,
  • M.A. Gafur,
  • R.A. Khan

Journal volume & issue
Vol. 6
p. 100104

Abstract

Read online

The current work aims to utilize sustainable natural fibers such as jute fiber in composite materials and a sustainable technology such as gamma (γ) irradiation to further treat the composites for their performance enrichment. First, synthetic glass fibers were hybridized to improve the performance of natural fiber composites (NFCs) with different stacking sequences. Jute fabrics were used as a natural fiber reinforcement and unsaturated polyester resin was employed as a thermoset polymer matrix. Composite laminates were manufactured by compression molding using a heat press machine. After hybridization, the mechanical properties and water resistance were improved compared to the neat NFCs (i.e., jute fiber composites, J0). The tensile strength, bending strength, tensile modulus, bending modulus, and impact strength were improved to 7–56, 5–53, 21–54, 27–69, and 199–387 %, respectively, than the J0. Further, gamma (γ) irradiation (5.0 kGy) was employed as a sustainable and chemical-free technology to treat the hybrid composite materials and improve the performance, and the optimum improvement was revealed for H3 (G2J4G2) hybrid composites. For H3, the enhancement of tensile, bending and impact strength was revealed at approximately 28, 65 and 27 %, respectively, while the tensile and bending modulus were exhibited at approximately 27 and 71 %, respectively, compared to their non-irradiated composite ones. Further characterization of the composites was studied by FTIR (Fourier Transform Infrared) spectroscopy and SEM (Scanning Electron Microscopy) experimentation.

Keywords