TeMA: Journal of Land Use, Mobility and Environment (Aug 2022)
Residential development simulation based on learning by agent-based model
Abstract
Increasing population and desire for urbanization increase housing demand in urban areas and ultimately induce growth and development of residential land-uses that result in urban sprawl. This paper simulates these sprawls of residential land-use in Qazvin city based on learning method by agent-based model. For this purpose, a model with the ability to learn from agents has been developed, in which families as agents can interact with each other and learn based on previous decisions. The model makes it possible to simulate residential land-use conversion based on the agent-based structure over the ten years by applying both demographic changes and household relocation desirability. The multiplication of the average level of land occupation by each family and the number of inserted new families indicates the potential magnitude of land-use changes. Also, results show the priority of residential development locations partially in the northeast regions and a small part of the south of Qazvin. These developments are expected to move towards the east in ten years.
Keywords