BMC Ophthalmology (Nov 2018)

A rodent model of anterior ischemic optic neuropathy (AION) based on laser photoactivation of verteporfin

  • Jing-yu Min,
  • Yanan Lv,
  • Lei Mao,
  • Yuan-yuan Gong,
  • Qing Gu,
  • Fang Wei

DOI
https://doi.org/10.1186/s12886-018-0937-5
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background A rodent model of photodynamic AION resulting from intravenous verteporfin is presented. The analysis of the morphological function, the pathological changes and the potential mechanism of action were further investigated. Methods Photodynamic treatment was conducted on the optic nerve head (ONH) following administration of the photosensitizer. The fellow eye was considered as sham control. Fundus Fluorescein angiography (FFA), spectral domain optical coherence tomography (SD-OCT) and Flash-visual evoked potential (F-VEP) recordings were conducted at different time points. Immunohistochemistry was used to observe apoptotic cell death (TUNEL) and macrophage infiltration (ED-1/Iba-1). Retrograde labeling of retinal ganglion cells (RGCs) was used to evaluate the loss of RGCs. Results After laser treatment, SD-OCT indicated optic nerve edema, while FFA indicated late leakage of the ONH. F-VEPs were distinctly reduced compared to control eyes. The number of apoptotic RGCs peaked on day 14 (5.71 ± 0.76, p < 0.01). The infiltration of ED-1 and Iba-1 increased on the 3rd day following PDT, while it peaked on day 14 (67.5 ± 9.57 and 77.5 ± 12.58 respectively, p < 0.01). Following 3 weeks of AION, the densities of RGCs in the central retinas of the normal and AION eyes were 3075 ± 298/mm2 and 2078 ± 141/mm2 (p < 0.01), respectively. Conclusions Verteporfin photodynamic treatment on rodents ONH can lead to functional, histological, and pathological changes. This type of animal model of AION is easy to establish and stable. It can be used for studying the mechanism and neuroprotective medicine of AION injury.

Keywords