Mìžnarodnij Endokrinologìčnij Žurnal (Jun 2022)

Product of metabolic activity of intestinal microbium trimethylamine-N-oxide (TMAO) — biomarker of progression of atherosclerosis-copy in the heart of the heart

  • К.О. Shyshkan-Shyshova,
  • O.V. Zinych

DOI
https://doi.org/10.22141/2224-0721.18.4.2022.1177
Journal volume & issue
Vol. 18, no. 4
pp. 231 – 238

Abstract

Read online

The literature data on the importance of intestinal microbiota as an endocrine organ — producer of biologically active metabolites, which perform key functions to maintain metabolic homeostasis of the whole organism, in particular the condition of the cardiovascular system, are analyzed. Clinical and experimental studies using a metabolomical approach have shown that the development of atherosclerotic CVD is often associated with ele­vated levels of one of the microbial metabolites, trimethylamine N-oxide (TMAO). TMAO may be a sensitive prognostic biomar­ker of complications of type 2 diabetes, including atherosclerosis and cardiovascular disease. The precursor of TMAO is trimethy­lamine (TMA), formed by intestinal bacteria from food phosphatidylcholine and L-carnitine. In the liver, TMA is converted to TMAO under the influence of hepatic flavin monooxygenase 3. The mecha­nisms of the proatherogenic effect of elevated levels of TMAO include effects on bile acid and cholesterol metabolism, platelet hyperactivation, stimulation of inflammatory processes and oxidative stress, induction of endothelial disfunction and endoplasmic reticulum stress. It has been established that TMAO, in conditions of chronic elevation, can contribute to cardiome­tabolic diseases. Elevated le­vels of TMAO in dysmetabolic conditions (obesity, type 2 diabetes, atherosclerosis, or coronary heart disease) have been suggested to be largely associated with the gut microbiota profile. Therefore, regulating the ratio of intestinal microorganisms or their ability to form a precursor of TMAO — TMA, may be a way to develop new tools for the prevention and treatment of atherosclerosis and prevent the progression of cardiovascular complications, including in patients with type 2 diabetes. Studies have shown that inhibiting various stages of TMAO production can reduce TMAO levels and help treat atherosclerosis and diabetes.

Keywords