Vaccines (May 2022)
Comparison of BNT162b2-, mRNA-1273- and Ad26.COV2.S-Elicited IgG and Neutralizing Titers against SARS-CoV-2 and Its Variants
Abstract
Because the vaccine-elicited antibody and neutralizing activity against spike protein of SARS-CoV-2 are associated with protection from COVID-19, it is important to determine the levels of specific IgG and neutralization titers against SARS-CoV-2 elicited by the vaccines. While three widely used vaccine brands (Pfizer-BNT162b2, Moderna-mRNA-1273 and Johnson-Ad26.COV2.S) are effective in preventing SARS-CoV-2 infection and alleviating COVID-19 illness, they have different efficacy against COVID-19. It is unclear whether the differences are due to varying ability of the vaccines to elicit a specific IgG antibody response and neutralization activity against spike protein of the virus. In this study, we compared the plasma IgG and neutralization titers against spike proteins of wild-type SARS-CoV-2 and eight variants in healthy subjects who received the mRNA-1273, BNT162b2 or Ad26.COV2.S vaccine. We demonstrated that subjects vaccinated with Ad26.COV2.S vaccine had significantly lower levels of IgG and neutralizing titers as compared to those who received the mRNA vaccines. While the linear regression analysis showed a positive correlation between IgG levels and neutralizing activities against SARS-CoV-2 WT and the variants, there was an overall reduction in neutralizing titers against the variants in subjects across the three groups. These findings suggest that people who received one dose of Ad26.COV2.S vaccine have a more limited IgG response and lower neutralization activity against SARS-CoV-2 WT and its variants than recipients of the mRNA vaccines. Thus, monitoring the plasma or serum levels of anti-SARS-CoV-2 spike IgG titer and neutralization activity is necessary for the selection of suitable vaccines, vaccine dosage and regimens.
Keywords